|Sábado, octubre 25, 2014

Capítulo III: Fisiología del Ciclo Menstrual  

Dr. Germán Barón Castañeda, M.D.

Para poder entender los trastornos del ciclo menstrual debemos inicialmente comprender algunos aspectos básicos de su fisiología. Los folículos empiezan su desarrollo desde la sexta a séptima semana de vida intrauterina; aumentan en número hasta la semana 20 alcanzando un máximo variable entre 6 y 7 millones, a partir de ese momento una gran proporción de ellos está condenada a sufrir el proceso de atresia. En el momento del nacimiento quedan reducidos a 300.000; estos folículos son los destinados a crecer o involucionar a lo largo de la vida reproductiva de la mujer. Solo 300 o 400 de ellos alcanzan su madurez completa llegando a la ovulación. La mayoría sufren el proceso de crecimiento inicial y luego van hacia la atresia; estas modificaciones ocurren continuamente hasta la menopausia sin parar incluso en el embarazo o los períodos anovulatorios.

Para su estudio el ciclo menstrual ha sido dividido en 3 fases: folicular, de ovulación y lútea.

1. Fase Folicular

Durante la fase folicular hay una serie de eventos ordenados que hacen que el número apropiado de folículos esté listo para la ovulación. Generalmente la consecuencia es la supervivencia de un folículo maduro. Dura 10 a 14 días gracias a la acción secuencial de una serie de hormonas y péptidos paracrinos y autocrinos. En ella deben analizarse los siguientes elementos.

Folículo primordial

El comienzo del ciclo está marcado por el crecimiento inicial de un folículo primordial, el cual consiste de un oocito detenido en estado de diplotene de la profase meiótica y una capa única de células de la granulosa, rodeados por un lámina basal. El número de folículos que crece en cada ciclo parece ser dependiente del tamaño del “pool” residual de folículos inactivos. El folículo destinado a crecer se cree que es seleccionado desde los primeros días del ciclo; hay autores que opinan que es derivado de una cohorte que ha crecido en ciclos previos en la fase lútea.

El primer signo visible de selección es el aumento de tamaño del oocito, seguido de la transformación de las células de la granulosa a cuboidales, convirtiéndose de tal manera en folículo primario. En respuesta a la FSH se forman puentes de unión entre las células de la granulosa y el oocito, que permiten el paso de nutrientes.

La iniciación del crecimiento folicular parece ser independiente de la estimulación de gonadotropinas y en la mayoría de los casos es seguido de atresia. El evento hormonal más importante de esta fase es el aumento de la FSH. La disminución de la esteroidogénesis y de secreción de inhibina en la fase lútea lleva a este aumento de FSH, lo cual permite rescatar algunos folículos de la atresia.

Folículo preantral

El folículo progresa al estado preantral cuando el oocito se agranda y es rodeado por una membrana: la zona pelúcida. La capa granulosa prolifera a varias capas de células y la teca se organiza formando el estroma. Al aparecer el compartimiento tecal, el folículo adquiere vascularización. Este folículo es el denominado secundario por otros autores. El crecimiento es dependiente de hormonas y está correlacionado con aumento en la producción de estrógenos.

Las células de la granulosa tienen la capacidad de sintetizar las tres clases de esteroides sexuales, pero es mayor la producción de estrógenos. La actividad de la aromatasa (P450arom) se encarga de la conversión de andrógenos a estrógenos y parece ser un factor limitante en la producción ovárica de estrógenos. La aromatización es inducida por la acción de la FSH. En la granulosa se encuentran receptores para FSH y su número también es un factor limitante en la producción hormonal. Una de las principales acciones de la FSH en esta etapa del ciclo es aumentar el número de sus propios receptores en el folículo. Además, en conjunto con los estrógenos, ejerce un efecto mitogénico sobre las células de la granulosa.

La FSH no solo interviene en iniciar la síntesis de estrógenos; también estimula el crecimiento de las células de la granulosa. Esta acción es mediada por el sistema de la adenil-ciclasa en conjunto con factores de crecimiento, prostaglandinas y péptidos. A medida que las células crecen, hay un grado de diferenciación entre ellas, posiblemente relacionado con su cercanía al oocito.

Las células de la granulosa tienen también receptores específicos para andrógenos, los cuales no solo sirven como substrato para la aromatización inducida por FSH, sino que en concentraciones bajas pueden estimular la acción de la aromatasa. Cuando el folículo preantral es expuesto a un medio rico en andrógenos se favorece la conversión de androstendiona a compuestos 5-a reducidos, que no pueden ser transformados a estrógenos e inhiben la aromatasa. Inhiben también la inducción de receptores para LH por FSH lo cual conduce a la atresia del folículo.

Folículo antral

Bajo la acción sinérgica de estrógenos y FSH hay un aumento en la producción de líquido folicular que se acumula en los espacios intercelulares de la granulosa, eventualmente uniéndose para formar una cavidad, razón por la cual en este momento el folículo adquiere el nombre de antral o terciario. Esta acumulación de líquido tiene como fin proveer de un medio endocrino especial al oocito y las células de la granulosa.

El líquido folicular está compuesto por proteínas plasmáticas, mucopolisacáridos, electrolitos, gonadotropinas y esteroides sexuales. Los mucopolisacáridos son secretados por las células de la granulosa por influencia de la FSH. Los electrolitos y proteínas pasan por trasudación de los vasos tecales. Las concentraciones de gonadotropinas son variables de acuerdo al tamaño folicular; los folículos mayores son ricos en estrógenos, mientras que los que van hacia la atresia tienen mayor contenido de andrógenos.

En presencia de FSH los estrógenos son la sustancia dominante en el líquido folicular, mientras que en ausencia de ella predominan los andrógenos. La LH normalmente no está presente hasta la mitad del ciclo; si se eleva prematuramente, la actividad mitótica de la granulosa disminuye y el folículo va hacia la atresia. La concentración de esteroides en el líquido folicular es mucho mayor que la plasmática.

Aunque tanto la teca como la granulosa tienen habilidad para producir progestágenos, estrógenos y andrógenos, la actividad de la aromatasa en la granulosa excede a la observada en la teca. Las células tecales en respuesta a LH producen andrógenos que son captados por las células de la granulosa; por acción de la enzima aromatasa son convertidos a estrógenos. Esto confirma la teoría de las dos células/dos gonadotropinas expuesta por Ryan y Petro. Posiblemente el primer estrógeno producido es la estrona que rápidamente es convertido a estradiol gracias a la 17-b-hidroxiesteroide deshidrogenasa.

A medida que el folículo se desarrolla, las células de la teca empiezan a expresar los genes para receptores de LH, el sistema citocromo P450 y la 3-b-hidroxiesteroide deshidrogenasa. El factor de crecimiento similar a la insulina I (IGF-I) actúa en forma sinérgica con la LH, aumentando la transcripción de genes; no interviene directamente en el proceso de esteroidogénesis. La entrada de colesterol a las mitocondrias está regulada directamente por la LH.

Teoria de las dos celulas

Figura 3.1 Teoría de las dos células/dos gonadotropinas

La selección adecuada del folículo dominante ocurre hacia los días 5 a 7 del ciclo y depende de dos acciones estrogénicas: interacción local entre estrógenos y FSH en el folículo y efecto de los estrógenos en la secreción hipofisiaria de FSH.

Mientras que los estrógenos ejercen un efecto positivo sobre el folículo que madura, su retroalimentación negativa sobre la hipófisis le quita soporte gonadotrópico al resto de folículos; esto disminuye la actividad de aromatasa, permitiendo que en ellos prime un ambiente androgénico. El folículo dominante debe escapar a esta supresión de FSH; tiene la ventaja de poseer un mayor número de receptores.

La atresia de los folículos ciertamente no solo es la expresión de la supresión de las gonadotropinas. Intervienen factores paracrinos y autocrinos que llevan a un proceso conocido con el término de apoptosis o muerte celular programada.

La acumulación de una mayor masa de células de la granulosa se acompaña de un aumento del desarrollo vascular de la teca. Esto puede ayudar al ingreso preferencial de gonadotropinas a este folículo. Para poder responder al pico ovulatorio, las células de la granulosa deben adquirir receptores para LH. En los grandes folículos antrales la FSH induce el desarrollo de receptores para LH. A medida que aumenta la concentración de estrógenos en el folículo, la FSH cambia su foco de acción, de su propio receptor hacia el receptor de LH. La LH puede inducir la producción de sus propios receptores en células previamente estimuladas por FSH. Para la aparición de receptores de LH es indispensable la presencia de los estrógenos.

El folículo dominante logra controlar la secreción de gonadotropinas a través de la producción de estrógenos y péptidos y, de esta manera, el crecimiento de los otros folículos, a través de mecanismos de retroalimentación que actúan sobre el hipotálamo y la hipófisis.

PUBLICACIONES RELACIONADAS